Optional seismic-rated models are designed for floor mounting using seismic brackets provided. Consult factory for details. Seismic-rated models are C-UL Listed with 30 minutes runtime. Optional 52 kW inverter or 60 minute battery runtimes intended for the Canadian market. All inverter letters "C" and "D" are for C-UL Listed inverters with 30 minute runtime available with 30 minutes runtime only. Consult factory for cabinet configurations of models with other runtimes. (See Pages 6 and 7 for cabinet configuration dimensions. Consult factory for cabinet footprints in the industry! Peak overload capability of 170% to accommodate initials current from LED fixtures/drivers. Meets NFPA 101, 111, NEC, IBC and local codes.

PRODUCT SELECTION GUIDE

EON MODEL NUMBER GUIDE

VOLTAGE CONFIGURATIONS

EON SERIES MODEL NUMBERS

NOTE: Consulting for various local breaker sizes provided within each Distribution Cabinet.

CONTACT CONFIGURATION

CONTACT CONFIGURATION

Contact us and/or consult our website for additional details about the product and the other Controlled Power Company emergency lighting inverters.

www.controlledpwr.com/EON

Represented by:

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

10 kW - 55 kW THREE PHASE

Meets NFPA 101, 111, NEC, IBC and local codes.

February 2018

Controlled Power Company guarantees the inverter to be free from defects in material and workmanship for a period of (2) years following shipment. Batteries are covered under a 1-year full, 14-year pro-rated warranty. Consult factory for details.
The “EON Model EL3” Advantages

Using existing features for emergency lighting and egress ensures compliance with minimum installation code requirements. The “EON Model EL3” is compact, maintenance-friendly, and is suitable for providing uninterrupted back-up power, until a utility override is activated.

Design Flexibility

Premier Power And Voltage Regulation

Maintenance-friendly operating voltage for HID and high pressure sodium lighting, as well as electronic ballast and LED lighting systems.

Voltage gap and surge protection

Wide range of input and output voltages, with automatic voltage regulation (AVR) and surge protection.

Load Distribution

Load distribution ensures that the output of the EON delivers a clean sine wave, with typically less than 5% total harmonic distortion (THD) over the full 90 minutes of emergency power.

Generator Compatible

The “EON Model EL3” is compatible with various gensets and is designed to provide superior backup power, ensuring safety and reduced maintenance costs. It is equipped with an automatic voltage regulator (AVR) and surge protection to maintain the output voltage within acceptable limits.

Reduced Utility Expense

Energy efficiency continues to be a prevalent issue. The “EON Model EL3” provides potential energy savings without compromising the safety requirements. This feature includes an electronic ballast, LED driver, and lamp kit.

The “EON Model EL3” offers an environmentally friendly and cost-effective solution for businesses and organizations. It is designed to meet the needs of various industries, including healthcare, education, hospitality, and retail. The “EON Model EL3” is a versatile and reliable emergency lighting and power system, ensuring safety and peace of mind for all users.
As an owner or specifying engineer... why choose the EON Model EL3 over competing brands? It’s a fair question. We believe that the answer is found in (4) key objectives which needed to be met when we designed this product ... and we would like to share those with you:

Full Compliance With NFPA 101
The EON meets the NFPA 101 definition of a computer-based, self-testing / self-diagnostic emergency lighting system with data-logging. Both periodic and annual tests are performed automatically, and the results are logged with a date and time stamp. Both alarm and test logs provide a history of events, and the ability to generate an NFPA-compliant report. The EON’s online design allows for continuous local and remote monitoring of all internal systems. Any abnormal condition is identified, logged, and immediately communicated.

LED Inrush Compatible
Lighting designs for new construction and retrofit projects are now including LED fixtures... and of course, some of these LED fixtures will be designated for emergency egress lighting. To stay on par with the LED lighting trend, we’ve designed the EON with a peak overload capability of 1700% to accommodate the inrush current from LED fixtures / drivers while the inverter is fed from the AC power source, or even while in battery mode.

Reliable Operation
Reliability is the most important feature of any emergency power source! Without it, all the other features and benefits are meaningless. This is why state-of-the-art, DSP-controlled, IGBT circuitry is used for the EON’s rectifier and inverter power sections. Also essential to the design, are the fiber optic cables for control and communications. Fiber optics allow for better isolation; and faster, more accurate, noise-free signals between processors. The EON provides reliable, regulated voltage during normal and emergency power modes.

The EON is designed to be compatible with all lighting fixture types, including LED. The EON also allows for full design flexibility, used to power both normally on and normally off emergency lighting loads, in any combination. The EON’s off bus option includes user-programmable transfer on delay, transfer off delay, and “remote input command”. (See Page 8 for details.)

Easy Installation & Low Cost Of Ownership
The EON’s 90 minute configuration requires only one (1) battery cabinet up to 33 kW, or two (2) cabinets from 40 kW to 55 kW. For all models, only batteries with front access terminals are used. This makes installation easy and less time consuming — installation is straightforward and DC connections are easily made.

Cost of ownership is greatly reduced because of single point operation and maintenance, as well as the automatic testing, logging of results, and reporting that are performed. Also know that the EON provides the required 90 minutes of runtime using a lower number of batteries as compared to most competitors’ products. This often results in a lower replacement cost — both time and material.

Compact Footprint
Facility floor space is hard to come by, and is always at a premium. With this in mind, the EON’s “front access” cabinet is thoughtfully designed to be physically smaller than comparable emergency lighting inverter products, without compromising installation, performance or serviceability. This attribute can be seen on models from 10 kW to 55 kW, and is best illustrated in our 33 kW comparison. Can you imagine saving up to 5-6 feet of wall space, making it available for other essential equipment?

<table>
<thead>
<tr>
<th></th>
<th>Output Rating</th>
<th>Width (in.)</th>
<th>Depth (in.)</th>
<th>Height (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EON</td>
<td>33 kW</td>
<td>70</td>
<td>33</td>
<td>77</td>
</tr>
<tr>
<td>Competitor A</td>
<td>32 kW</td>
<td>130</td>
<td>32.5</td>
<td>71</td>
</tr>
<tr>
<td>Competitor B</td>
<td>33 kW</td>
<td>140</td>
<td>31</td>
<td>72</td>
</tr>
</tbody>
</table>

Note: Dimensions include 90 minutes of battery at full load.

Note: Illustration depicts 33 kW product without standard floor channels.
Advanced Digital Monitoring —
The Intellistat TS™

The EON includes a user-friendly Intellistat TS™ monitor, which provides quick, full-access to all of the inverter’s features, allows all programming to be done directly from the touchscreen display, and provides complete system diagnostics and testing. A color, TFT, high resolution touchscreen display indicates all the electrical parameters, as well as the functional status of the inverter. The touchscreen display allows the entry of the date / time values, system setpoints, and password information into the monitor, without the need for an external computer and cable.

The Intellistat TS’s features include:
• LCD display of all electrical parameters.
• NFPA-compliant automatic battery testing / logging.
• User-programmable automatic system testing.
• System alarm annunciation.
• Audible alarm with alarm silence.
• Alarm status display.
• Programmable alarm set-points.
• Date and time display.
• Auto-logging of test results and abnormal events.
• Multi-layer password protection.
• Logs up to 75 events.
• Non-volatile clock and memory.
• Remote monitoring capabilities.
• Optional status notification via e-mail / voice / webpage.
• Optional status notification via e-mail / cell phone.

Monitored Parameters

The Intellistat TS monitors 3-phase input and output parameters, and inverter status indicators:
• Voltage
• Frequency
• Current
• VA
• Watts
• Power factor
• kVA and kW totals
• Output percent load L-N (%% kVA)
• Output percent load total (%% kVA)
• Battery voltage
• Battery charge / discharge current
• Battery time (minutes) remaining

Alarms & Status

The Intellistat TS announces multiple alarms, including:
• Input phase rotation error
• High / low input voltage
• High / low input frequency
• High / low output voltage
• High / low output frequency
• High output VA (overload)
• Low output VA
• High / low battery voltage
• High battery charger current
• System normal
• IGBT fault
• Overtemp shutdown
• System on battery
• Low battery warning
• Low battery shutdown
• Battery test in progress / time remaining
• Auto battery test failed
• Off bus status
• DC charger fail / DC open
• Output circuit breaker open
• REPO shutdown
• Manual restart required
• Static restart status / alarms
• System in manual bypass

The color touchscreen display on the Intellistat TS provides all electrical parameters, inverter status, programmable inverter and battery testing, and data-logging. Optional NetMinder™ communications allow for remote monitoring and reporting via BACnet/IP or BACnet MS/TP, Ethernet TCP/IP, MODBUS TCP, or MODBUS RS485. For more details, see the Remote Communications description on Page 7.

Egress Lighting Integrity Test

This feature provides the industry’s most advanced life safety system test available. To satisfy NFPA-mandated periodic and annual requirements, the Intellistat TS automatically initiates the testing of all life safety circuits, regardless of egress lighting design (“always on” or “normally off”). The Intellistat TS then compares power consumption during the test period with user-defined load capacity, analyzes the data, and advises if service is required.

During these NFPA-mandated tests, an optional “test activated” contact may be used to activate one or more remotely installed ZoneSaver-2 emergency lighting control units. When activated, the ZoneSaver-2 will feed emergency power to egress lighting that is normally off, or dimmed / turned off via a local control device. This option allows for automatic testing of the locally controlled life safety circuit and the ZoneSaver-2 control unit.

Automatic System Tests

The Intellistat TS automatically performs a user-defined (date and time) 5-minute system test every 30 or 90 days. It also performs user-defined (date and time) 30-, 60-, or 90-minute, or 2- or 4-hour annual system tests. For all of these tests, the Intellistat TS logs the test results with date and time, as well as a “pass” or “fail” indication.

Manual System Tests

The Intellistat TS allows the user to manually invoke a user-defined system test for 30-, 60-, or 90-minutes, as well as 2- or 4-hours. A 1-minute or 5-minute manual test is also available for “spot inspections”.

* User-programmable limit referenced during automatic battery testing, to verify integrity of egress lighting.
SPECIFICATIONS

Power

<table>
<thead>
<tr>
<th>Ratings (kVA/kW)</th>
<th>10, 13, 14, 15, 16, 17, 20, 22, 24, 26, 28, 30, 32, 33, 40, 45, 50, 55 at 1.0 (unity) power factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>True online double-conversion, uninterruptible power</td>
</tr>
</tbody>
</table>

Electrical Input

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>208/120V, 480/277V or 600/347V Wye, 60Hz. Consult factory for 50Hz models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range</td>
<td>+10%, -15% at full load</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>+/-5% from nominal</td>
</tr>
<tr>
<td>Power Factor</td>
<td>> .98 typical</td>
</tr>
<tr>
<td>Current Distortion</td>
<td>< 10% THD</td>
</tr>
<tr>
<td>System AIC Rating</td>
<td>10k AIC standard; 65k or 100k AIC optional</td>
</tr>
</tbody>
</table>

Electrical Output

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>208/120V, 480/277V or 600/347V Wye, 60Hz. Consult factory for 50Hz models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Regulation</td>
<td>+/-3% from nominal typical</td>
</tr>
<tr>
<td>Frequency</td>
<td>+/-0.5% while in battery operation mode</td>
</tr>
<tr>
<td>Overload</td>
<td>Up to: 110% for 2 minutes, 125% for 30 seconds, 150% for 10 seconds, 400% for 4 cycles (without use of static bypass)</td>
</tr>
<tr>
<td>LED Inrush Rating</td>
<td>Peak overload capability of 1700% to accommodate inrush current from LED fixtures (without use of static bypass)</td>
</tr>
<tr>
<td>Voltage Distortion</td>
<td>3% maximum THD with a linear load</td>
</tr>
<tr>
<td>Efficiency</td>
<td>90% typical</td>
</tr>
</tbody>
</table>

Battery

<table>
<thead>
<tr>
<th>Type</th>
<th>Valve-regulated, sealed lead calcium, maintenance-free. Front access terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtimes</td>
<td>Standard and optional runtimes available. (See Page 7 "Battery Runtimes")</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>Factory-programmable from 216-408 VDC, or from 132-168 VDC, kW, model, and runtime dependent</td>
</tr>
<tr>
<td>Charger</td>
<td>3-stage, temperature compensated</td>
</tr>
<tr>
<td>Recharge Time</td>
<td>UL 924 and NFPA 101, 111 compliant</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>Hot-swappable batteries — replaced without interrupting power to the load</td>
</tr>
</tbody>
</table>

Certifications

<table>
<thead>
<tr>
<th>Safety</th>
<th>UL 924 Listed - Emergency Lighting Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-UL Listed</td>
<td>C-UL Listed to CSA C22.2 No. 141-15 - Emergency Lighting Equipment</td>
</tr>
<tr>
<td>UL 924 Listed</td>
<td>UL 924 Listed - Auxiliary Lighting and Power Equipment</td>
</tr>
<tr>
<td>NFPA 101, 111, NEC, and local codes</td>
<td></td>
</tr>
<tr>
<td>EMI Compliance</td>
<td>FCC Class A limits, 47 C.F.R. Part 15, Subparts A, B</td>
</tr>
<tr>
<td>Quality</td>
<td>ISO 9001:2015</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Diagnostics</th>
<th>Continuous system self-check, including battery health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Bypass</td>
<td>Automatic bypass on overload or system failure</td>
</tr>
<tr>
<td>Internal Bypass</td>
<td>Standard Make-Before-Break switch with a secure push-to-turn function that provides an uninterrupted bypass of the inverter system</td>
</tr>
<tr>
<td>Maintenance Bypass</td>
<td>Wrap-around, 4pole BBM or MBB switch options available with a secure push-to-turn function. (See pages 7 and 8 for details.)</td>
</tr>
<tr>
<td>Remote Emergency</td>
<td>Optional input relay interface allows external contact closure to shut off the inverter system</td>
</tr>
<tr>
<td>Power Off (REPO)</td>
<td>Optional standby output for use with "normally off" circuits feeding emergency lighting fixtures. (See Page 8 for details.)</td>
</tr>
<tr>
<td>Normally Off Bus</td>
<td>Optional output circuit breakers</td>
</tr>
<tr>
<td>Dimensions/Weight</td>
<td>See model number matrix on Page 9 for weights, and Page 6 and 7 for cabinet dimensions</td>
</tr>
</tbody>
</table>

Communications

<table>
<thead>
<tr>
<th>LCD Display</th>
<th>High resolution, color touchscreen display for monitoring system status and parameters, and to access programmable inverter and battery testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Port</td>
<td>RS232 serial communications for factory setup and authorized field service access</td>
</tr>
<tr>
<td>Network/Web</td>
<td>Remote monitoring and reporting via optional BACnet/IP or BACnet MS/TP, Ethernet TCP/IP, MODBUS TCP, or MODBUS RS485. (See Page 7 for details.)</td>
</tr>
<tr>
<td>Relay Interface</td>
<td>Optional potential-free isolated status and alarm contacts via hardwired terminal strip. Contacts rated for 2A at 30 VDC, or 1A at 120 VAC</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>20°C to 35°C for UL 924 Listed models and C-UL Listed models to CSA C22.2 No. 141-15 (See illustration and note below.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>Inverter at -20°C to 50°C. Battery storage at 25°C for 6 months before charging is required. For each 9°C rise, reduce storage time by half</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0 to 95% non-condensing</td>
</tr>
<tr>
<td>Audible Noise</td>
<td>< 60 dBA at 1 meter</td>
</tr>
<tr>
<td>Altitude</td>
<td>6600 feet (2000 meters) without derating</td>
</tr>
</tbody>
</table>

UL Rating Temperature Test Comparison

<table>
<thead>
<tr>
<th>Competitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>EON</td>
</tr>
</tbody>
</table>

NOTE: To satisfy UL 924 and CSA C22.2 No. 141-15 requirements for a 35°C rating, UL testing was performed in a 40°C ambient environment, with units tested under full load and at low line input voltage.
Advantages of the Front Access “EON Model EL3”

- Inverter Input Breaker
- Output Power Conduit
- Input Power Conduit
- * Inverter Output Breaker
- Intellistat TS Monitor
 (Touchscreen Display)
- Internal Bypass Switch
- Front Access Batteries
 for Easy Installation
 & Maintenance
- 40 kW – 55 kW models
 with 90 minutes runtime
 require two (2) battery
 cabinets
- DC Battery Circuit Breaker
- NOTE: “Dead Front” Allows Operation
 of Breakers & Bypass, But Prevents
 Physical Contact with Live Connections

NOTES: The callouts above reflect standard features.
* Monitored output circuit breaker standard on C-UL listed models, optional on UL 924 listed models.

Cabinet Configurations (10 kW – 33 kW)

- Cabinet Configuration A
- Cabinet Configuration B
- Cabinet Configuration C

See Page 9 for specific inverter models and their cabinet configurations.
Controlled Power Company engineers and manufactures the industry’s highest quality, custom and stock emergency lighting inverters, capable of over 40 years of reliability. We have an enviable reputation for quality, which reflects in the design, workmanship, and performance of our products.

The “EON Model EL3” Life Safety

Album from the 1916 Olympic Games, where single-point operation controls from a single smaller inverter, and all testing and recording of the emergency power equipment is performed from the life safety inverter.

The EON offers these safety and versatility to improve installation, and is the perfect component for all life and safety-lighting applications.

Our inverter technology enables maintenance critical equipment with extended battery run times, voltage regulation and power conditioning. Tight voltage regulation assures that facility systems are maintained at the correct voltage for lighting, fire alarms, fire detectors, and a variety of other safety applications.

With over 40 years of experience, the EON delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

EON Model EL3 Advantages

- **Reduced Utility Expense**
- **Increased Energy Conservation**
- **Reduced Maintenance**
- **Less-frequent replacement of ballasts, LED drivers, and lamps.**
- **Voltage sag and surge protection.**
- **Maintenance-free, standard 15-year pro-rated batteries.**
- **Egress lighting integrity test.**
- **Communital battery replacement.**
- **Standards-compliant as “Life Safety Equipment” and “Auxiliary Lighting and Power Equipment”**
- **Improved recording of the emergency power equipment is performed from one location.**

Single Point Operation / Maintenance

One central inverter controls many smaller circuits. Coaxial, single-point operation is cost effective, and maintenance at the location can be performed from the same point of entry. Additionally, all testing and recording of the emergency power equipment is performed from a central point.

Design Flexibility

Using existing features for emergency lighting and egress ensures compliance with minimum standard code requirements. The “EON Model EL3” allows the selection of redundant or single input/output alternates, inverter(s) and/or emergency lighting and security systems. Status / alarm contacts include maintenance relay contacts, which provide remote monitoring of the inverter status, battery test pass/fail results, alarm conditions, and electrical parameters.

Premium Power And Voltage Regulation

Maintains proper operating voltage for HVAC and high pressure sodium lighting, as well as electronic ballast and LED lighting systems.

- **Voltage sag and surge protection.**
- **Programmed battery replacement.**
- **Standardized internal bypasses.**
- **Maintenance-free, standard 15-year pro-rated batteries.**

Battery Alarms

Any alarmed circuit breaker will indicate the position of the switch (normal or bypass) for local and remote monitoring purposes.

- **Integral, push-to-turn, 4 pole Make-Before-Break (MBB), or Remote Input Command**
- **Remote Input Command**

- **Integral Monitoring Bypass**

- **Inverter Options (10 kW – 55 kW)**

Models 10kW – 33kW

Output Distribution

Delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

- **Integral Power Inverter**
- **Output Distribution**
- **Remote Input Command**

Models 40kW – 55kW

Output Distribution

Serves as the foundation for a complete emergency lighting system. The EON delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

- **Integral Power Inverter**
- **Output Distribution**
- **Remote Input Command**

Integral Maintenance Bypass

The EON delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

- **Integral Power Inverter**
- **Output Distribution**
- **Remote Input Command**

Models 100kW – 330kW

Output Distribution

Delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

- **Integral Power Inverter**
- **Output Distribution**
- **Remote Input Command**

Integral Maintenance Bypass

The EON delivers a clean sine-wave, with typically less than 10% total harmonic distortion (THD). The EON also includes a number of unique features, including a weatherproof, tamper-resistant cabinet, and is available for both indoor and outdoor use.

- **Integral Power Inverter**
- **Output Distribution**
- **Remote Input Command**
The “EON Model EL3” Advantages

Using existing features for emergency lighting and egress assures compliance with minimum illumination code requirements.

- **Lower Life-Cycle Cost:** Optimal performance minimizes the need for frequent maintenance.),(bem_serve)

- **Tight Voltage Regulation:** The efﬁcient inverter technology and unique design enable the EON to maintain tight voltage regulation and provide reliable, consistent lighting performance.

- **Zone Sensing:** EON’s efﬁcient inverter technology enables the EON to maintain the highest level of performance for any given load across a wide range of input voltages. This ensures that the EON delivers consistent lighting performance and maintains the required level of illumination at all times.

- **Energy Conservation:** The inverter’s efﬁcient operation minimizes energy consumption, resulting in lower operating costs and reduced environmental impact.

- **Flexibility and Access:** The EON’s modular design allows for easy installation and maintenance, providing greater convenience and ﬂexibility.

- **High Reliability:** The EON’s robust design and advanced technology ensure high reliability and long-term performance.

- **Environmental Performance:** The EON is designed to meet strict environmental standards, promoting sustainable practices.

DIMENSIONS & INVERTER OPTIONS

<table>
<thead>
<tr>
<th>Inverter Options</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kW – 55kW</td>
<td>39” x 29” x 24”</td>
</tr>
<tr>
<td>60kW – 165kW</td>
<td>44” x 31” x 24”</td>
</tr>
<tr>
<td>200kW – 500kW</td>
<td>41” x 32” x 24”</td>
</tr>
<tr>
<td>1000kW – 3300kW</td>
<td>77” x 41” x 44”</td>
</tr>
</tbody>
</table>

Centralized Maintenance Bypass

- **Wall Mounted Maintenance Bypass:** On systems in which the generator input and output voltage is the same as the nominal input and output voltage, the service entrance subpanel consists of a switch and a feeder breaker. The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Output Distribution:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Output Power Conduit:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Normally Off Conductors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.

- **Input Power Connectors:** The EON model EL3 wall mounted maintenance bypass switch is available with a standard maintenance switch or with a maintenance switch and an isolated emergency power bus. The maintenance switch is located within the system’s distribution cabinet.
Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprint in the industry!

Peak overload capability of 1700% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

Applications:
- Theaters / Concert Halls
- Auditoriums
- Worship Facilities
- Conference / Banquet Centers
- Shopping Malls
- Casinos
- Sports Facilities
- University Buildings
- Healthcare Facilities
- Correctional Facilities
- Subway / Train Stations
- Industrial Manufacturing
- Warehouses

Contact us and/or consult our website for additional details about this product and other Controlled Power Company emergency lighting inverters.

www.controlledpower.com/EON

EON® | EON™ | EON®-EL3

Designed, manufactured, and tested under the direct supervision of Controlled Power Company, Inc.

10kW - 55kW THREE PHASE

Model Information:

EON®/EON™/EON®-EL3

*EON® tubes are IP 65 rated and UL 924 Listed for Freestanding Emergency Lighting Equipment. UL 924-rated lighting fixtures are designed to be installed on the 10kW – 33kW models and are designed and tested in accordance with the applicable portions of the following standards:

- UL 924 Supplemental Standard for Indoor Emergency Lighting Fixtures – Non-Metallic Fixtures
- UL 508: “Standard for Electric Control Equipment”
- UL 2043: “Battery Systems for Emergency Applications”
- UL 1778: “Lighting Contactor Safety Standards”
- UL 480: “Standard for Flexible Cables”

Peak overload capability of 1700% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

Contact us and/or consult our website for additional details about this product and other Controlled Power Company emergency lighting inverters.

www.controlledpower.com/EON
EON MODEL NUMBER GUIDE

- EON55-004-0818

PRODUCT SELECTION GUIDE

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

Peak overload capability of 170% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

VOLTAGE CONFIGURATIONS

- 208/120 VAC Input = A
- 208/120 VAC Output = C
- 480/277 - 480/277 VAC = D
- 480/277 - 208/120 VAC = E
- 600/347 - 600/347 VAC = F
- 500/263 - 500/263 VAC = G
- 480/277 - 208/120 VAC = H

For additional details about this product and other Controlled Power Company emergency lighting inverters, contact us and/or consult our website:

www.controlledpwr.com/EON

EON55-004-0818

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

Peak overload capability of 170% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

VOLTAGE CONFIGURATIONS

- 208/120 VAC Input = A
- 208/120 VAC Output = C
- 480/277 - 480/277 VAC = D
- 480/277 - 208/120 VAC = E
- 600/347 - 600/347 VAC = F
- 500/263 - 500/263 VAC = G
- 480/277 - 208/120 VAC = H

For additional details about this product and other Controlled Power Company emergency lighting inverters, contact us and/or consult our website:

www.controlledpwr.com/EON

EON55-004-0818

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

Peak overload capability of 170% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

VOLTAGE CONFIGURATIONS

- 208/120 VAC Input = A
- 208/120 VAC Output = C
- 480/277 - 480/277 VAC = D
- 480/277 - 208/120 VAC = E
- 600/347 - 600/347 VAC = F
- 500/263 - 500/263 VAC = G
- 480/277 - 208/120 VAC = H

For additional details about this product and other Controlled Power Company emergency lighting inverters, contact us and/or consult our website:

www.controlledpwr.com/EON

EON55-004-0818

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

Peak overload capability of 170% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.

VOLTAGE CONFIGURATIONS

- 208/120 VAC Input = A
- 208/120 VAC Output = C
- 480/277 - 480/277 VAC = D
- 480/277 - 208/120 VAC = E
- 600/347 - 600/347 VAC = F
- 500/263 - 500/263 VAC = G
- 480/277 - 208/120 VAC = H

For additional details about this product and other Controlled Power Company emergency lighting inverters, contact us and/or consult our website:

www.controlledpwr.com/EON

EON55-004-0818

Centralized Emergency Lighting Inverters

Featuring one of the smallest three phase cabinet footprints in the industry!

Peak overload capability of 170% to accommodate initial current from LED fixtures/drivers!

Meets NFPA 101, 111, NEC, IBC and local codes.